Model reduction in stochastic vibration energy harvesting using compressive sampling
نویسنده
چکیده
Vibration energy harvesters are designed to gather parasitic energy from the motion of their host structures. In many germane scenarios, this motion is broadband; however, the preponderance of design criteria appearing in the literature for vibration energy harvesters considers sinusoidal base excitation at a single frequency. While this analysis often leads to analytical formulas for estimating power harvested, they fail to account for the contribution of multiple frequency components of the host motion and the excitation of higher vibration modes of the transducer. In this paper, an attempt is made to provide brief, analytical approximation of these additional factors. To wit, the single-mode, single-frequency power formula is extended to multi-frequency inputs and multiple modal excitations by matching each base acceleration frequency component to at most one mode of vibration whose half-power bandwidth that frequency falls within. Then, due to orthogonality, the expected power can be written as the sum of the contributions of the individual frequency components. To demonstrate the accuracy of this approximation, recorded acceleration signals from a car idling and a person walking are used as inputs, and predictions from the approximation are compared to results from full simulations. Approximations using only three frequency components are shown to be more than 80% accurate, with increased accuracy as the base acceleration signal becomes narrower in bandwidth. The effects of charge cancellation in the higher modes are also considered using simulations and the aforementioned approximations. These studies show that rectifying the strain in the higher modes is only beneficial if these modes contribute significantly to the power harvested. The approximate formulas derived in this paper are useful for making this determination. (Some figures may appear in colour only in the online journal)
منابع مشابه
Improving Power Density of Piezoelectric Vibration-Based Energy Scavengers
Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...
متن کاملEnhanced Vibrational Energy Harvesting Using Non-linear Stochastic Resonance
Stochastic resonance has seen wide application in the physical sciences as a tool to understand weak signal amplification by noise. However, this apparently counterintuitive phenomenon does not appear to have been exploited as a tool to enhance vibrational energy harvesting. In this note we demonstrate that by adding periodic forcing to a vibrationally excited energy harvesting mechanism, the p...
متن کاملSmart Flat Membrane Sheet Vibration-Based Energy Harvesters
The dynamic responses of membrane are completely dependent on Pre-tensioned forces which are applied over a boundary of arbitrary curvilinear shape. In most practical cases, the dynamic responses of membrane structures are undesirable. Whilst they can be designed as vibration-based energy harvesters. In this paper a smart flat membrane sheet (SFMS) model for vibration-based energy harvester is ...
متن کاملA periodic folded piezoelectric beam for efficient vibration energy harvesting
Periodic piezoelectric beams have been used for broadband vibration energy harvesting in recent years. In this paper, a periodic folded piezoelectric beam (PFPB) is introduced. The PFPB has special features that distinguish it from other periodic piezoelectric beams. The Adomian decomposition method (ADM) is used to calculate the first two band gaps andtwelve natural frequencies of the PF...
متن کاملShape Design Optimization of Unimorph Piezoelectric Cantilever Energy Harvester
The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. In this work vibration energy harvesting via piezoelectri...
متن کامل